Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(39): 14539-14547, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37729112

RESUMEN

Increased interest in greenhouse gas (GHG) emissions, including recent legislative action and voluntary programs, has increased attention on quantifying and ultimately reducing methane emissions from the natural gas supply chain. While inventories used for public or corporate GHG policies have traditionally utilized bottom-up (BU) methods to estimate emissions, the validity of such inventories has been questioned. Therefore, there is attention on utilizing full-facility measurements using airborne, satellite, or drone (top-down (TD)) techniques to inform, improve, or validate inventories. This study utilized full-facility estimates from two independent TD methods at 15 midstream natural gas facilities in the U.S.A., which were compared with a contemporaneous daily inventory assembled by the facility operator, employing comprehensive inventory methods. Estimates from the two TD methods statistically agreed in 2 of 28 paired measurements. Operator inventories, which included extensions to capture sources beyond regular inventory requirements and integration of local measurements, estimated significantly lower emissions than the TD estimates for 40 of 43 paired comparisons. Significant disagreement was observed at most facilities, both between the two TD methods and between the TD estimates and operator inventory. These findings have two implications. First, improving inventory estimates will require additional on-site or ground-based diagnostic screening and measurement of all sources. Second, the TD full-facility measurement methods need to undergo further testing, characterization, and potential improvement specifically tailored for complex midstream facilities.

2.
Environ Sci Technol ; 57(32): 11823-11833, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506319

RESUMEN

Government policies and corporate strategies aimed at reducing methane emissions from the oil and gas sector increasingly rely on measurement-informed, site-level emission inventories, as conventional bottom-up inventories poorly capture temporal variability and the heavy-tailed nature of methane emissions. This work is based on an 11-month methane measurement campaign at oil and gas production sites. We find that operator-level top-down methane measurements are lower during the end-of-project phase than during the baseline phase. However, gaps persist between end-of-project top-down measurements and bottom-up site-level inventories, which we reconcile with high-frequency data from continuous monitoring systems (CMS). Specifically, we use CMS to (i) validate specific snapshot measurements and determine how they relate to the temporal emission profile of a given site and (ii) create a measurement-informed, site-level inventory that can be validated with top-down measurements to update conventional bottom-up inventories. This work presents a real-world demonstration of how to reconcile CMS rate estimates and top-down snapshot measurements jointly with bottom-up inventories at the site level. More broadly, it demonstrates the importance of multiscale measurements when creating measurement-informed, site-level emission inventories, which is a critical aspect of recent regulatory requirements in the Inflation Reduction Act, voluntary methane initiatives such as the Oil and Gas Methane Partnership 2.0, and corporate strategies.


Asunto(s)
Contaminantes Atmosféricos , Metano , Metano/análisis , Gas Natural/análisis , Contaminantes Atmosféricos/análisis
3.
Environ Sci Technol ; 56(20): 14743-14752, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36201663

RESUMEN

Methane mitigation from the oil and gas (O&G) sector represents a key near-term global climate action opportunity. Recent legislation in the United States requires updating current methane reporting programs for oil and gas facilities with empirical data. While technological advances have led to improvements in methane emissions measurements and monitoring, the overall effectiveness of mitigation strategies rests on quantifying spatially and temporally varying methane emissions more accurately than the current approaches. In this work, we demonstrate a quantification, monitoring, reporting, and verification framework that pairs snapshot measurements with continuous emissions monitoring systems (CEMS) to reconcile measurements with inventory estimates and account for intermittent emission events. We find that site-level emissions exhibit significant intraday and daily emission variations. Snapshot measurements of methane can span over 3 orders of magnitude and may have limited application in developing annualized inventory estimates at the site level. Consequently, while official inventories underestimate methane emissions on average, emissions at individual facilities can be higher or lower than inventory estimates. Using CEMS, we characterize distributions of frequency and duration of intermittent emission events. Technologies that allow high sampling frequency such as CEMS, paired with a mechanistic understanding of facility-level events, are key to an accurate accounting of short-duration, episodic, and high-volume events that are often missed in snapshot surveys and to scale snapshot measurements to annualized emissions estimates.


Asunto(s)
Contaminantes Atmosféricos , Gas Natural , Contaminantes Atmosféricos/análisis , Metano/análisis , Gas Natural/análisis , Sulfuros , Estados Unidos , United States Environmental Protection Agency
4.
Environ Sci Technol ; 53(8): 4619-4629, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30924643

RESUMEN

A "bottom-up" probabilistic model was developed using engineering first-principles to quantify annualized throughput normalized methane emissions (TNME) from natural gas liquid unloading activities for 18 basins in the United States in 2016. For each basin, six discrete liquid-unloading scenarios are considered, consisting of combinations of well types (conventional and unconventional) and liquid-unloading systems (nonplunger, manual plunger lift, and automatic plunger lift). Analysis reveals that methane emissions from liquids unloading are highly variable, with mean TNMEs ranging from 0.0093% to 0.38% across basins. Automatic plunger-lift systems are found to have significantly higher per-well methane emissions rates relative to manual plunger-lift or non-plunger systems and on average constitute 28% of annual methane emissions from liquids unloading over all basins despite representing only ∼0.43% of total natural gas well count. While previous work has advocated that operational malfunctions and abnormal process conditions explain the existence of super-emitters in the natural gas supply chain, this work finds that super-emitters can arise naturally due to variability in underlying component processes. Additionally, average cumulative methane emissions from liquids unloading, attributed to the natural gas supply chain, across all basins are ∼4.8 times higher than those inferred from the 2016 Greenhouse Gas Reporting Program (GHGRP). Our new model highlights the importance of technological disaggregation, uncertainty quantification, and regionalization in estimating episodic methane emissions from liquids unloading. These insights can help reconcile discrepancies between "top-down" (regional or atmospheric studies) and "bottom-up" (component or facility-level) studies.


Asunto(s)
Contaminantes Atmosféricos , Gases de Efecto Invernadero , Metano , Modelos Estadísticos , Gas Natural , Estados Unidos
5.
J Air Waste Manag Assoc ; 69(1): 71-88, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30204538

RESUMEN

Novel aerial methane (CH4) detection technologies were used in this study to identify anomalously high-emitting oil and gas (O&G) facilities and to guide ground-based "leak detection and repair" (LDAR) teams. This approach has the potential to enable a rapid and effective inspection of O&G facilities under voluntary or regulatory LDAR programs to identify and mitigate anomalously large CH4 emissions from a disproportionately small number of facilities. This is the first study of which the authors are aware to deploy, evaluate, and compare the CH4 detection volumes and cost-effectiveness of aerially guided and purely ground-based LDAR techniques. Two aerial methods, the Kairos Aerospace infrared CH4 column imaging and the Scientific Aviation in situ aircraft CH4 mole fraction measurements, were tested during a 2-week period in the Fayetteville Shale region contemporaneously with conventional ground-based LDAR. We show that aerially guided LDAR can be at least as cost-effective as ground-based LDAR, but several variable parameters were identified that strongly affect cost-effectiveness and which require field research and improvements beyond this pilot study. These parameters include (i) CH4 minimum dectectable limit of aerial technologies, (ii) emission rate size distributions of sources, (iii) remote distinction of fixable versus nonfixable CH4 sources ("leaks" vs. CH4 emissions occurring by design), and (iv) the fraction of fixable sources to total CH4 emissions. Suggestions for future study design are provided. Implications: Mitigation of methane leaks from existing oil and gas operations currently relies on on-site inspections of all applicable facilities at a prescribed frequency. This approach is labor- and cost-intensive, especially because a majority of oil and gas-related methane emissions originate from a disproportionately small number of facilities and components. We show for the first time in real-world conditions how aerial methane measurements can identify anomalously high-emitting facilities to enable a rapid, focused, and directed ground inspection of these facilities. The aerially guided approach can be more cost-effective than current practices, especially when implementing the aircraft deployment improvements discussed here.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/prevención & control , Monitoreo del Ambiente , Contaminación Ambiental , Metano/análisis , Industria del Petróleo y Gas/normas , Aire/análisis , Aire/normas , Aeronaves , Análisis Costo-Beneficio , Salud Ambiental/métodos , Salud Ambiental/normas , Monitoreo del Ambiente/economía , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Contaminación Ambiental/prevención & control , Restauración y Remediación Ambiental/métodos , Humanos , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...